EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Quickstart

Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with:

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

Overview

This repository contains an op-for-op PyTorch reimplementation of EfficientNet, along with pre-trained models and examples.
The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. This implementation is a work in progress -- new features are currently being implemented.

Details about the models are below:

Name # Params Top-1 Acc. Pretrained?
efficientnet-b0 5.3M 76.3
efficientnet-b1 7.8M 78.8
efficientnet-b2 9.2M 79.8
efficientnet-b3 12M 81.1
efficientnet-b4 19M 82.6
efficientnet-b5 30M 83.3
efficientnet-b6 43M 84.0
efficientnet-b7 66M 84.4

Example: Feature Extraction

You can easily extract features with model.extract_features:

from efficientnet_pytorch import EfficientNet
model = EfficientNet.from_pretrained('efficientnet-b0')

# ... image preprocessing as in the classification example ...
print(img.shape) # torch.Size([1, 3, 224, 224])

features = model.extract_features(img)
print(features.shape) # torch.Size([1, 1280, 7, 7])