转载自https://blog.csdn.net/jzj_c_love/article/details/122279703

代码都可以在typora中运行,给出的图片链接语法是Ketax,可能有少数的不适用,但基本可以。

一、基本公式

1. 上下标


A_1^2
\\
B_{12}
\\
2^{x^2+y}

\[A_1^2\\B_{12}\\2^{x^2+y}\]

2. 分数

$$
\frac{x}{1+x^2}
\\
\frac{\frac{1}{2}+x}{y}
\\
\tfrac{a}{b}
\frac{a}{b}
$$

\[\frac{x}{1+x^2}\\\frac{\frac{1}{2}+x}{y}\\\tfrac{a}{b}\frac{a}{b}\]

3. 开根号

$$
\sqrt{x}
\sqrt[3]{x}
$$

\[\sqrt{x}\sqrt[3]{x}\]

4. 组合数

$$
\binom{n}{k}
\tbinom{n}{k}
$$

\[\binom{n}{k}\tbinom{n}{k}\]

5. 导数

$$
a'
a''
a^{\prime}
$$

\[a'a''a^{\prime}\]

6. 取模

$$
x \pmod a
\\
2\mod{x}
$$

\[x \pmod a\\2\mod{x}\]

7. 积分

$$
\int_{1}^{2}
\intop_{2}^{1}
\oint
\smallint
\\
\iint
\oiint
\iiint
\oiiint
$$

\[\int_{1}^{2}\intop_{2}^{1}\oint\smallint\\\iint\oiint\iiint\oiiint\]

8.微分

$$
\nabla  
\partial x  
\mathrm{d}x
\dot x  
\ddot y
\Delta
$$

\[\nabla  \partial x   \mathrm{d}x \dot x  \ddot y \Delta\]

9.累积/累乘/极限

$$
\sum_{i=1}^{k}
\displaystyle\sum_{i=1}^n
\textstyle\sum_{i=1}^n
\\
\prod_{i=1}^{k}
\displaystyle\prod_{i=1}^n
\textstyle\prod_{i=1}^n
\\
\lim_{k \to \infty}
\lim\limits_{k \to \infty}
\lim\nolimits_{k \to \infty}]
$$

\[\sum_{i=1}^{k}\displaystyle\sum_{i=1}^n\textstyle\sum_{i=1}^n\\\prod_{i=1}^{k}\displaystyle\prod_{i=1}^n\textstyle\prod_{i=1}^n\\\lim_{k \to \infty}\lim\limits_{k \to \infty}\lim\nolimits_{k \to \infty}]\]

二、修饰符号

1. 简单的帽子

\hat{\theta}
\widehat{AB}
\\
\bar{y}
\overline{AB}
\\
\tilde{a}
\widetilde{ac}
\\
\bar{a}
\acute{a}
\check{a}
\grave{a}
\\
\dot{a}
\ddot{a}
\\
\vec{a}
\overline{a}
\underline{a}
\underset{min}{a}
\\
\hat{a}
\widehat{a}
\\
\mathring{a}\dddot{a}
\\
\ddddot{a}

\[\hat{\theta}\widehat{AB}\\\bar{y}\overline{AB}\\\tilde{a}\widetilde{ac}\\\bar{a}\acute{a}\check{a}\grave{a}\\\dot{a}\ddot{a}\\\vec{a}\overline{a}\underline{a}\underset{min}{a}\\\hat{a}\widehat{a}\\\mathring{a}\dddot{a}\\\ddddot{a}\]

2. 帽子和袜子

$$
\overleftarrow{AB}
\overrightarrow{AB}
\overleftrightarrow{AB}
\\
\underleftarrow{AB}
\underrightarrow{AB}
\underleftrightarrow{AB}
\\
\overbrace{AB}
\underbrace{AB}
\\
\overline{AB}
\underline{AB}
$$

\[\overleftarrow{AB}\overrightarrow{AB}\overleftrightarrow{AB}\\\underleftarrow{AB}\underrightarrow{AB}\underleftrightarrow{AB}\\\overbrace{AB}\underbrace{AB}\\\overline{AB}\underline{AB}\]

3. 盒子和帽子

$$
\overbrace{a+b+c}^{\text{note}}
\\
\underbrace{a+b+c}_{\text{note}}
\\
\boxed{\pi=3.14}
$$

\[\overbrace{a+b+c}^{\text{note}}\\\underbrace{a+b+c}_{\text{note}}\\\boxed{\pi=3.14}\]

4. 各种括号

$$
(
\big(
\Big(
\bigg(
\Bigg(
$$

\[( \big(\Big(\bigg(\Bigg(\]

$$
[]
<>
|-2|
\{\}
$$

\[[]<>|-2|\{\}\]

$$
\lgroup x \rgroup
\lVert a \rVert
\lceil 2.6 \rceil
\lfloor 1.2 \rfloor
\ulcorner
\urcorner
\llcorner
\lrcorner
$$

\[\lgroup x \rgroup\lVert a \rVert\lceil 2.6 \rceil\lfloor 1.2 \rfloor\ulcorner\urcorner\llcorner\lrcorner\]

三、字母

1、数学环境默认字体

\[mathnormal\\\mathnormal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathnormal{abcdefghijklmnopqrstuvwxyz}\\\mathnormal{1234567890}\]

2、意大利体

\[mathit\\\mathit{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathit{abcdefghijklmnopqrstuvwxyz}\\\mathit{1234567890}\]

##3、罗马体

\[mathrm\\\mathrm{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathrm{abcdefghijklmnopqrstuvwxyz}\\\mathrm{1234567890}\]

4、粗体

\[mathbf\\\mathbf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathbf{abcdefghijklmnopqrstuvwxyz}\\\mathbf{1234567890}\]

5、无衬线体

\[mathsf\\\mathsf{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathsf{abcdefghijklmnopqrstuvwxyz}\\\mathsf{1234567890}\]

6、打印机体

\[mathtt\\\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathtt{abcdefghijklmnopqrstuvwxyz}\\\mathtt{1234567890}\]

7、手写体

\[mathcal\\\mathcal{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathcal{abcdefghijklmnopqrstuvwxyz}\\\mathcal{1234567890}\]

8、黑板粗体

\[mathbb\\\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathbb{abcdefghijklmnopqrstuvwxyz}\\\mathbb{1234567890}\]

9、花体

\[mathscr\\\mathscr{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathscr{abcdefghijklmnopqrstuvwxyz}\\\mathscr{1234567890}\]

10、哥特体

\[mathfrak\\\mathfrak{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\\\mathfrak{abcdefghijklmnopqrstuvwxyz}\\\mathfrak{1234567890}\]

11、其他字母

\text{字母}
\bf{字母}
\mathit{字母}
\pmb{字母}
\cal{字母}

\[\text{R}\text{A}\text{C}\text{L}\\\bf{R}\bf{A}\bf{C}\bf{L}\\\mathit{R}\mathit{A}\mathit{C}\mathit{L}\\\pmb{R}\pmb{A}\pmb{C}\pmb{L}\\\cal{R}\cal{A}\cal{C}\cal{L}\]

\tiny ABCabc
\small ABCabc
\normalsize ABCabc
\large ABCabc
\Large ABCabc
\huge ABCabc
\Huge ABCabc
{\tiny ABC} {\large ABC}

\[\tiny ABCabc\\\small ABCabc\\\normalsize ABCabc\\\large ABCabc\\\Large ABCabc\\\huge ABCabc\\\Huge ABCabc\\{\tiny ABC} {\large ABC}\]

12、希腊字母

\[\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda \mu \nu \xi \pi \rho \sigma \tau \upsilon \phi \chi \psi \omega \\\Gamma \varGamma \gamma \digamma \\\Delta \varDelta \delta \\\epsilon \varepsilon \\\Theta \varTheta \theta \vartheta \\\kappa \varkappa\\\Xi \varXi \xi\\\Pi \varPi \pi \varpi\\\rho \varrho\\\Sigma \varSigma \sigma \varsigma\\\Upsilon \varUpsilon \upsilon\\\Phi \varPhi \phi \varphi\\\Psi \varPsi \psi\\\Omega \varOmega \omega\\\]

image
image

13、希伯来字母

\[\aleph \beth \daleth \gimel\]

$$

$$

四、算术运算符号

\times
\div
\cdot
\%
\circ
\ast
\star
\otimes
\oplus
\odot
\oslash
\pm
\mp
\dotplus
\divideontimes
\textbackslash

\[\times\div\cdot\%\circ\ast\star\otimes\oplus\odot\oslash\pm\mp\dotplus\divideontimes\textbackslash\]

五、比较运算符

\[= \ne \neq\\< \nless > \ngtr\\\leq \le \nleq \leqq \nleqq \lneqq \lvertneqq \leqslant \nleqslant \lneq\\\geq \ge \ngeq \geqq \ngeqq \gneqq \gvertneqq \geqslant \ngeqslant \gneq\\\lesssim \lnsim \lessapprox \lnapprox\\\gtrsim \gnsim \gtrapprox \gnapprox\\\prec \nprec \\\succ \nsucc\\\preceq \npreceq \precneqq\\\succeq \nsucceq \succneqq\\\in \notin \ni \owns\\\ll \lll\gg \ggg\\\sim \nsim \simeq \cong \ncong\\\approx\equiv\doteq\\\subset \subseteq \nsubseteq \subsetneq \varsubsetneq \\\subseteqq \nsubseteqq \subsetneqq \varsubsetneqq\\\supset \supseteq \nsupseteq \supsetneq \varsupsetneq\\\supseteqq \nsupseteqq \supsetneqq \varsupsetneqq\\\smile \frown\perp\models\\\mid \nmid\shortmid \nshortmid \shortparallel \nshortparallel\\\vdash \nvdash \dashv\vDash \nvDash \Vvdash\Vdash \nVdash \nVDash\\\propto\bowtie \Join\\\vartriangleleft \ntriangleleft \trianglelefteq \ntrianglelefteq\\\vartriangleright \ntriangleright \trianglerighteq \ntrianglerighteq\\\]

六、集合运算符

\in
\owns \not
\subset \not
\supset
\subseteq
\supseteq
\\
\cap
\cup
\land
\lor
\\
\neg
\emptyset
\varnothing
\\
\because
\forall
\exists
\therefore
\cap
\cup
\land
\lor
\sqcup
\sqcap

\[\in\owns \not\subset \not\supset\subseteq\supseteq\\\cap\cup\land\lor\\\neg\emptyset\varnothing\\\because\forall\exists\therefore\cap\cup\land\lor\sqcup\sqcap\]

七、各种箭头

\gets
\leftarrow
\to
\rightarrow
\leftrightarrow
\\
\uparrow
\downarrow
\updownarrow
\Leftarrow
\Rightarrow
\Leftrightarrow
\iff
\\
\Uparrow
\Downarrow
\Updownarrow
\nearrow
\searrow
\swarrow
\nwarrow
\longleftarrow
\longrightarrow
\longleftrightarrow
\Longleftarrow
\Longrightarrow
\Longleftrightarrow
\longmapsto
\xrightarrow{over}
\xrightarrow[over]{}
\xrightarrow[under]{over}
\xleftarrow[]{over}
\xleftarrow[under]{}
\xleftarrow[under]{over}

\[\gets\leftarrow\to\rightarrow\leftrightarrow\\\uparrow\downarrow\updownarrow\Leftarrow\Rightarrow\Leftrightarrow\iff\\\Uparrow\Downarrow\Updownarrow\nearrow\searrow\swarrow\nwarrow\longleftarrow\longrightarrow\longleftrightarrow\Longleftarrow\Longrightarrow\Longleftrightarrow\longmapsto\xrightarrow{over}\xrightarrow[over]{}\xrightarrow[under]{over}\xleftarrow[]{over}\xleftarrow[under]{}\xleftarrow[under]{over}\]

\[\rightarrow \nrightarrow \longrightarrow \Rightarrow \nRightarrow \Longrightarrow \\\leftarrow \nleftarrow \longleftarrow \Leftarrow \nLeftarrow \Longleftarrow \\\leftrightarrow \nleftrightarrow \Leftrightarrow \nLeftrightarrow \longleftrightarrow \iff \Longleftrightarrow\\\uparrow \downarrow \updownarrow \Uparrow \Downarrow \\\nearrow \swarrow \nwarrow \searrow \\\rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \\\upharpoonleft \downharpoonleft \upharpoonright \downharpoonright \\\rightleftharpoons \leftrightharpoons \\\curvearrowleft \curvearrowright \circlearrowleft \circlearrowright \\\Lsh \Rsh \upuparrows \downdownarrows \leftleftarrows \rightrightarrows \]

七、空间间距

A\!B
\\
AB
\\
A\thinspace B
\\
A\:B
\\
A\ B
\\
A \enspace B
\\
A\quad B
\\
A\qquad B

\[A\!B\\AB\\A\thinspace B\\A\:B\\A\ B\\A \enspace B\\A\quad B\\A\qquad B\]

八、矩阵

A=
\begin{pmatrix}
a & b & \cdots & c \\
d & e & \cdots & f \\
\vdots & \vdots & \ddots & \vdots \\
g & h & \cdots & j
\end{pmatrix}
\tag{5.1}

\[A=\begin{pmatrix}a & b & \cdots & c \\\\d & e & \cdots & f \\\\\vdots & \vdots & \ddots & \vdots \\\\g & h & \cdots & j\end{pmatrix}\tag{5.1}\]

A = \begin{matrix}
a & b\\
c & d
\end{matrix}

\[A = \begin{matrix}a & b\\c & d\end{matrix}\]

B = \begin{pmatrix}
a & b\\
c & d
\end{pmatrix}

\[B = \begin{pmatrix}a & b\\\\c & d\end{pmatrix}\]

C = \begin{vmatrix}
a & b\\
c & d
\end{vmatrix}

\[C = \begin{vmatrix}a & b\\\\c & d\end{vmatrix}\]

D = \begin{bmatrix}
a & b\\
c & d
\end{bmatrix}

\[D = \begin{bmatrix}a & b\\\\c & d\end{bmatrix}\]

E = \begin{Vmatrix}
a & b\\
c & d
\end{Vmatrix}

\[E = \begin{Vmatrix}a & b\\\\c & d\end{Vmatrix}\]

\begin{aligned}
f(x) &= (x+1)^2\\
&= x^2 + 2x + 1
\end{aligned}

\[\begin{aligned}f(x) &= (x+1)^2\\\\&= x^2 + 2x + 1\end{aligned}\]

f(x) = \begin{cases}
a &\text{if b}\\
b &\text{if a}\\
\end{cases}

\[f(x) = \begin{cases}a &\text{if b}\\\\b &\text{if a}\\\\\end{cases}\]

\begin{cases}
\begin{aligned}
x + 2y &= 1\\
3x - y &= 5
\end{aligned}
\end{cases}

\[\begin{cases}\begin{aligned}x + 2y &= 1\\\\3x - y &= 5\end{aligned}\end{cases}\]

g(x,y)=\left\{
\begin{array}{rcl}
\frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f}\\
F^*_L & & {S_L \leq 0 < S_M}\\
F^*_R & & {S_M \leq 0 < S_R}\\
F_R & & {S_R \leq 0}
\end{array} \right.

\[g(x,y)=\begin{cases}\begin{array}{rcl}\frac{M_g - d}{M_f-b}[f(x,y)-b]+d & & {b \leq f(x,y) \leq M_f}\\\\F^*_L & & {S_L \leq 0 < S_M}\\\\F^*_R & & {S_M \leq 0 < S_R}\\\\F_R & & {S_R \leq 0}\end{array} \end{cases}\]

九、修改字体大小

AB
\Huge AB
\huge AB
\\
AB
\LARGE AB
\Large AB
\large AB
\\
AB
\small AB
\tiny AB

\[AB\Huge AB\huge AB\\AB\LARGE AB\Large AB\large AB\\AB\small AB\tiny AB\]

十、划掉

\cancel{5}
\bcancel{5}
\xcancel{ABC}
\not =

\[\cancel{5}\bcancel{5}\xcancel{ABC}\not =\]

十一、常见图形

\Box
\square
\blacksquare
\triangle
\triangledown
\blacktriangle
\diamond
\Diamond
\star
\bigstar
\circ
\bullet
\bigcirc
\bigodot
\diamondsuit
\clubsuit
\heartsuit
\spadesuit
\angle
\measuredangle
\top
\bot
\infty
\checkmark
\dagger
\ddagger
\yen
\$

\[\Box\square\blacksquare\triangle\triangledown\blacktriangle\diamond\Diamond\star\bigstar\circ\bullet\bigcirc\bigodot\diamondsuit\clubsuit\heartsuit\spadesuit\angle\measuredangle\top\bot\infty\checkmark\dagger\ddagger\yen\\]$

十二、声明宏

对于一些复杂但是只有少许不同的表达式,可以声明一个函数来调用,提高源码的可读性,减少出错

\def\macroname#1#2{
your command
}

宏允许带任意数量的参数(也可以不带参),必须是#1,#2,……这样的命名格式,同时注意再定义宏的时候注意让#1与,否则会解析成#。再调用的时候格式为,可以参考一下的例子

\def\Normal#1#2#3{
\frac{1}{\sqrt{2\pi}\ #3}\exp{[-\frac{(#1 - #2)^2}{2\ #3^2}]}
}
f(x)=\Normal{x}{u_1}{\sigma_1}\\
f(y)=\Normal{y}{u_2}{\sigma_2}\\

\[\def\Normal#1#2#3{\frac{1}{\sqrt{2\pi}\ #3}\exp{[-\frac{(#1 - #2)^2}{2\ #3^2}]}} f(x)=\Normal{x}{u_1}{\sigma_1}\\f(y)=\Normal{y}{u_2}{\sigma_2}\\\]

\def\EXP{
e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots
}
\EXP

\[\def\EXP{e^x = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + \cdots} \EXP\]

十三、其他

1、排版

公式居中:

E=mc^2\\

\[E=mc^2\\\]

添加标签:

cos\theta+isin\theta=e^{i\theta}\tag{1.1}

\[cos\theta+isin\theta=e^{i\theta}\tag{1.1}\]

\[E=mc^2\]

等号对齐:

\begin{align}f(x)=&x-1\\=&(x-1)(x^2+x+1)\end{align}\\

\[\begin{align}f(x)=&x-1\\=&(x-1)(x^2+x+1)\end{align}\\\]

\begin{equation} \begin{split}
a &= b + c - d \\
&= e - f \\
&= g + h \\
&= i
\end{split} \end{equation}\\

\[\begin{equation} \begin{split}a &= b + c - d \\ &= e - f \\ &= g + h \\ &= i\end{split} \end{equation}\\\]

2、公式加方框行号 \[\begin{equation}\boxed{a^{2}=b^{2}+c^{2}-2bc\cos A }\\\end{equation}\]

\[{ \bbox[#EFF]{\boxed{\text{求导数: }y=\sin^2\left(\frac1x\right)-2^x.}}}\]

\ldots \quad \cdots \quad \vdots \quad \ddots \quad \dotsc

\[\ldots \quad \cdots \quad \vdots \quad \ddots \quad \dotsc\]

3、 求和符号下多行限制条件

\prod_{k_0,k_1,\ldots>0\atop 
   k_0+k_1+\cdots=n}
  {A_{k_0}A_{k_0}\cdots}

\[\prod_{k_0,k_1,\ldots>0\atop &emsp;&emsp; k_0+k_1+\cdots=n}&emsp;&emsp;{A_{k_0}A_{k_0}\cdots}\]

4、上下标记

\overline{x+y} \qquad \underline{a+b} \qquad \overbrace{1+2+\cdots+n}^{n个} \qquad \underbrace{a+b+\cdots+z}_{共有26个}

\[\overline{x+y} \qquad \underline{a+b} \qquad \overbrace{1+2+\cdots+n}^{n个} \qquad \underbrace{a+b+\cdots+z}_{共有26个}\]

5、显示长方程

\begin{multline}
p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3\\
- 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
\end{multline}

\[\begin{multline}p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3\\ - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3\end{multline}\]

6、普通数学符号 $$

\[ 7、其他符号 \]\[ 8、可带上下限的数学算子巨型符号 \]

\

\

\$$

9、LaTex二元运算符

\[\triangleleft \triangleright \bigtriangleup \bigtriangledown\\\blacktriangleleft \blacktriangleright\\\wedge \land \vee \lor\\\cap \cup \sqcap \sqcup\\\ddagger \dagger\\\uplus \amalg \diamond \bullet \wr \div\\\odot \oslash \otimes \oplus\\\mp \pm \circ \bigcirc \setminus \\\cdot \ast \times \star\\\]

10、AMS二元运算符 \[\dotplus\smallsetminus\intercal\\\Cap \doublecap \Cup \doublecup\\\barwedge \veebar \doublebarwedge\\\boxminus \boxdot \boxplus\\\ltimes \rtimes\\\divideontimes\\\leftthreetimes \rightthreetimes\\\curlywedge \curlyvee\\\centerdot\\\circleddash \circledast \circledcirc\\\lhd \unlhd \rhd \unrhd\\\]

11、其他 \[ \begin{CD} && @V V\partial V &@VV\partial V&@V V\partial V \\ 0@>>>S_q(X;G')@>\phi>>S_q(X;G)@>\psi>>S_q(X;G'')@>>>0 \\ && @V V\partial V &@VV\partial V&@V V\partial V \\ 0@>>>S_{q-1}(X;G')@>\phi>>S_{q-1}(X;G)@>\psi>>S_{q-1}(X;G'')@>>>0 \\ && @V V\partial V &@VV\partial V&@V V\partial V \end{CD} \]

\[ \begin{CD} 0@>>>G'@>\phi>>G@>\psi>>G''@>>>0 \end{CD} \]

\[\begin{array}{c|c} \cap&\color{blue}{BC}\\ \hline \color{red}A&-3\\ \color{blue}B&-1\\ \color{blue}C&-1\\ \end{array}\]

$$x x \

$$