文章总览 - 11

Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation
发表于Information Fusion 2023。
1
Forgery-aware Adaptive Learning with Vision Transformer for Generalized Face Forgery Detection
发表于TCSVT 2024。
2
Deep Adaptive Fuzzy Clustering for Evolutionary Unsupervised Representation Learning
发表于IEEE Transactions on Neural Networks and Learning Systems 2023,提出了DAFC来自动分组图像,得到的迭代优化问题可以通过小批量RMSprop和反向传播而不是SGD有效地解决,可以学习一个更聚类友好的瓶颈空间。
3
A survey on deep learning-based image forgery detection
发表于Pattern Recognition 2023,基于深度学习的图像伪造检测综述。
5
Deep Fuzzy K-Means With Adaptive Loss and Entropy Regularization
发表于IEEE Transactions on Fuzzy Systems 2019,提出了深度模糊k-means(DFKM),具有加权自适应损失函数的FKM。
7