文章总览 - 14

Image as Set of Points
发表于ICLR2023,将图像视为一组无组织的点,并通过简化的聚类算法提取特征。具体地说,每个点都包括原始特征(如颜色)和位置信息(如坐标),并采用简化的聚类算法对深度特征进行分层分组和提取。
2
Contextrast:Contextual Contrastive Learning for Semantic Segmentation
发表于CVPR2024,该论文面向语义分割任务中不准确的分割边界,提出了Contextrast,即设计了一个基于INfoNCE损失的新损失函数,以保证在不同尺度下的特征(不同类别的平均特征)的空间关系保持一致,还提出了基于边界引导的负样本挖掘方法,旨在提高负样本的质量。(代码未公布)
6
Deep Clustering for Unsupervised Learning of Visual Features
发表于CVPR2020,其提出了在线深度聚类的方法,即设计并维护了两个动态内存模块,即用于存储样本标签和特征的样本内存,以及用于质心进化的质心内存,将突然的全局聚类分解为稳定的内存更新和批量标签重新分配。
7