文章总览 - 8
Knowledge_Distillation
Knowledge_Distillation

1
Unlocking the Capabilities of Large Vision-Language Models for Generalizable and Explainable Deepfake Detection
Unlocking the Capabilities of Large Vision-Language Models for Generalizable and Explainable Deepfake Detection

发表于ICML2025,将细粒度的伪造特征转化为语言模型的输入,在LLM提示调优后,得到解释性的deepfake检测结果。

2
Rethinking Image Forgery Detection via Soft Contrastive Learning and Unsupervised Clustering
Rethinking Image Forgery Detection via Soft Contrastive Learning and Unsupervised Clustering

TDSC2025的文章,首次使用对比学习加聚类的方法做图像篡改检测。

3
Cluster Triplet Loss for Unsupervised Domain Adaptation on Histology Images
Cluster Triplet Loss for Unsupervised Domain Adaptation on Histology Images

发表于CVPR2024,提出了一种新的无监督域适应方法,该方法采用聚类三元组损失函数,仅使用源域中的少量信息,从而提升目标域的性能。以源域中的重要节点的聚类中心为锚点,通过三元组损失,将目标域锚定到这些固定的聚类中心。源域的完美结构应该与目标域的完美结构相似,才能用作锚点。

4
三元组损失
三元组损失

5
Stacking Brick by Brick:Aligned Feature Isolation for Incremental Face Forgery Detection
Stacking Brick by Brick:Aligned Feature Isolation for Incremental Face Forgery Detection

发表于CVPR2025,一个未经充分训练的IFFD模型在处理新的伪造时容易出现灾难性遗忘,这是因为将所有伪造都视为单一的“假”类别,导致不同类型的伪造品相互覆盖,从而导致早期任务中独特特征的遗忘,这存在于所有的IDF任务中,该论文提出了一种方法,通过将先前任务和新任务的潜在特征分布逐块堆叠,实现特征的对齐隔离。为了保留已学习到的伪造信息,并通过最小化分布重叠来积累新知识,从而减轻灾难性遗忘。首先引入了稀疏均匀回放(SUR),以获取可以视为先前全局分布的均匀稀疏版本的代表性子集。接着,我们提出了一个潜在空间增量检测器(LID),该检测器利用SUR数据来隔离和对齐分布。

6
ClusterFomer:Clustering As A Universal Visual Learner
ClusterFomer:Clustering As A Universal Visual Learner

发表于NeurIPS2023,本文介绍了一种基于CLUSTERing范式与TransFORMER的通用视觉模型——CLUSTERFORMER。该模型包含两个创新设计:①循环交叉注意力聚类,重新定义了TransFORMER中的交叉注意力机制,通过递归更新聚类中心,促进强大的表示学习;②特征调度,利用更新后的聚类中心,通过基于相似性的度量重新分配图像特征,形成一个透明的处理流程。

7
OmniGuard:Hybrid Manipulation Localization via Augmented Versatile Deep Image Watermarking
OmniGuard:Hybrid Manipulation Localization via Augmented Versatile Deep Image Watermarking

发表于CVPR2025,将版权水印和图像篡改主动保护两个任务联合起来。

8