文章总览 - 98

Towards Generic Image Manipulation Detection with Weakly-Supervised Self-Consistency Learning
发表于ICCV2023,为弱监督图像篡改检测,具体来说,学习了两个一致性属性,多源一致性(MSC, multi-source consistency)和补丁间一致性(IPC, inter-patch consistency )。MSC利用不同的内容无关信息,并通过在线伪标签生成和细化过程实现跨源学习。IPC执行全局成对补丁关系推理,以发现完整的操作区域。
73
CatmullRom Splines-Based Regression for Image Forgery Localization
发表于AAAI2024,提出基于CatmullRom样条的回归网络,为了明确抑制假阳性样本和避免不确定性边界,综合再评分算法(CRA,Comprehensive Re-scoring Algorithm),综合评估每个区域的信任分数作为篡改区域,而垂直纹理交互感知(VTP, Vertical Texture-interactive Perception)控制生成更准确的区域边缘。
*现有问题*: 假阳性(FPs)和不准确的边界。 *解决方案*: 基于CatmullRom样条的回归网络(CSR-Net, CatmullRom Splines-based Regression Network),首次尝试将回归方法引入像素级任务。为了明确抑制假阳性样本和避免不确定性边界,我们设计两个相互互补和强化的组件,即综合再评分算法(CRA,Comprehensive Re-scoring Algorithm),综合评估每个区域的信任分数作为篡改区域,而垂直纹理交互感知(VTP, Vertical Texture-interactive Perception)控制生成更准确的区域边缘。