分类 - 图像篡改检测
MOODv2:Masked Image Modeling for Out-of-Distribution Detection
MOODv2:Masked Image Modeling for Out-of-Distribution Detection

发表于TIFS 2024,采用基于重构的方法实现 OOD 检测,发现无需微调,基于重构的预训练模型在OOD检测任务上表现优秀。

1
Forensics-Bench:A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
Forensics-Bench:A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models

发表于CVPR2025,提出了Forensics-Bench,统一了所有基于大型视觉语言模型LVLMs的伪造检测器,并基于基准实验,提出了独特的发现。

2
ForensicsSAM
ForensicsSAM

发表于aixiv。

3
MUN:Image Forgery Localization Based on M3 Encoder and UN Decoder
MUN:Image Forgery Localization Based on M3 Encoder and UN Decoder

发表于AAAI 2025,其使用了Noiseprint++作为低级特征提取器,使用双流结构,其使用池化操作之后的结构作为查询向量,进行融合是最大的创新点。

4
Mesoscopic Insights:Orchestrating Multi-Scale & Hybrid Architecture for Image Manipulation Localization
Mesoscopic Insights:Orchestrating Multi-Scale & Hybrid Architecture for Image Manipulation Localization

发表于AAAI2025,该论文同时构建IML所需的微观与宏观信息介观表征,并提出Mesorch架构,一种融合卷积神经网络和Transformer模型优势的混合模型,通过动态调整尺度权重,能高效捕捉介观层面的伪影特征。

5
Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization
Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization

发表于TIFS 2025,,通过在特征提取网络阶段使用dropout层让同样的图像可以得到不同的输出特征,基于此,使用了两阶段训练,第一阶段在图像内部、跨尺度和跨模态三个维度使用对比损失进行训练,第二阶段使用交叉熵训练定位头,其代码思路和FOCAL非常相似。

6
GIM:A Million-scale Benchmark for Generative Image Manipulation Detection and Localization
GIM:A Million-scale Benchmark for Generative Image Manipulation Detection and Localization

发表于AAAI2025,提出了GIM数据集,提出了双流网络GIMFormer。

7
Loupe:A Generalizable and Adaptive Framework for Image Forgery Detection
Loupe:A Generalizable and Adaptive Framework for Image Forgery Detection

发表于IJCAI 2025,Loupe通过整合补丁感知分类器与带条件查询的分割模块,实现了全局真实性分类与细粒度掩码预测的同步处理。为增强对测试集分布偏移的鲁棒性,该模型创新性地采用伪标签引导的测试时自适应机制,利用补丁级预测结果对分割头进行监督学习。。

8
ForensicHub:A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization
ForensicHub:A Unified Benchmark & Codebase for All-Domain Fake Image Detection and Localization

发表于arxiv上的论文,非常棒的工作!其整合了深度伪造检测、图像篡改检测/定位、AI生成图像检测和文档图像处理定位四大任务,并基于基准实验,提出了独特的发现。

9
TruFor:Leveraging all-round clues for trustworthy image forgery detection and localization
TruFor:Leveraging all-round clues for trustworthy image forgery detection and localization

发表于CVPR2023,该框架通过基于Transformer的融合架构,同时提取高阶特征与低阶特征:前者整合RGB图像与自适应学习的噪声敏感指纹,后者则通过仅使用真实数据进行自监督训练,精准捕捉相机内外部处理产生的伪影特征。

10