分类 - IML

CatmullRom Splines-Based Regression for Image Forgery Localization
发表于AAAI2024,提出基于CatmullRom样条的回归网络,为了明确抑制假阳性样本和避免不确定性边界,综合再评分算法(CRA,Comprehensive Re-scoring Algorithm),综合评估每个区域的信任分数作为篡改区域,而垂直纹理交互感知(VTP, Vertical Texture-interactive Perception)控制生成更准确的区域边缘。
*现有问题*: 假阳性(FPs)和不准确的边界。 *解决方案*: 基于CatmullRom样条的回归网络(CSR-Net, CatmullRom Splines-based Regression Network),首次尝试将回归方法引入像素级任务。为了明确抑制假阳性样本和避免不确定性边界,我们设计两个相互互补和强化的组件,即综合再评分算法(CRA,Comprehensive Re-scoring Algorithm),综合评估每个区域的信任分数作为篡改区域,而垂直纹理交互感知(VTP, Vertical Texture-interactive Perception)控制生成更准确的区域边缘。具体情况
 在本文中,我们精心设计了一个定制的基于CatmullRom样条的回归网络(CSR-Net),并尝试将回归方法引入像素级图像篡改定位(本文中的IFL)。 详细地说,与传统的边界盒检测方法相比,我们引入了CatmullRom定位技术,该技术对目标区域控制点的轮廓进行了建模,从而实现了更准确和有效的篡改区域定位。然后,为了抑制FPs(假阳性),设计了综合再评分算法(CRA),我们为每个区域实例重新分配分数,区域实例的综合得分由分类得分(CLS)和实例得分(INS)两部分组成。 此外,我们还提出了一个可学习的区域纹理提取模块垂直纹理交互感知(VTP)来进一步参考边缘。  因此,CSRNet可以在不接近FPs的情况下感知所有被篡改的区域,并实现准确的定位。大量的实验表明,CSR-Net优于现有的最先进的方法,不仅在自然图像数据集上,而且在社交媒体数据集上。
Rethinking Image Forgery Detection via Contrastive Learning and Unsupervised Clustering
aixiv文章,首次使用对比学习加聚类的方法做图像篡改检测。
23
Learning Discriminative Noise Guidance for Image Forgery Detection and Localization
发表于AAAI2024,一种两阶段判别噪声引导的方法,第一阶段训练一个噪声提取器,以明确地扩大真实区域和伪造区域之间的噪声分布差异,第二阶段将噪声不一致和RGB数据集成,以进行伪造检测和定位。
*现有问题*: - 随着篡改和后处理技术的发展,这两个区域在噪声域之间的差异变得不那么明显,甚至不那么隐藏。鉴于这些缺陷,我们建议明确地学习和利用噪声的不一致性可以进一步提高IFDL的性能。 *解决方案*: 通过关注噪声域内的操纵痕迹来检测和定位图像伪造,一种两阶段判别噪声引导的方法,第一阶段训练一个噪声提取器,以明确地扩大真实区域和伪造区域之间的噪声分布差异,第二阶段将噪声不一致和RGB数据集成,以进行伪造检测和定位。具体情况
一阶段:  为了明确地分离出这两个区域(真实的和伪造的)的噪声分布,我们引入了JS散度来约束 $ G_d $ 。首先,我们利用 groundtruth掩模,将 $ G_d $ 划分为真实区域 $ N_a $ 的噪声和伪造区域 $ N_f $ 的噪声。  式中, $ \sigma_a $ 、 $ \sigma_f $ 为 $ N_a $ 和 $ N_f $ 的标准差, $ \mu_a $ 、 $ \mu_f $ 为 $ N_a $ 和 $ N_f $ 的平均值。 $$ \mathbf{L_{n}}=\lambda\left(1-JSD\right)+\left(1-\lambda\right)\mathcal{L}\left(Y,G_{c}\right) $$ 二阶段:  利用两个分支来处理RGB和噪声信息,为了保证噪声不一致对RGB的引导作用,我们设计了CAGF,并将其与ResNet块交替放置。在噪声的引导下,RGB分支可以提取出与篡改伪影高度相关的特征。
MGQFormer: Mask-Guided Query-Based Transformer for Image Manipulation Localization
发表于AAAI2024,为应对交叉熵损失优先考虑逐像素精度,但忽略了篡改区域的空间位置和形状细节,设计了基于掩码引导查询的转换器框架(MGQFormer),该框架使用GroundTruth掩码来引导可学习查询令牌(LQT)识别伪造区域。
*现有问题*: - 所有现有的IMD主要通过交叉熵损失使用真值掩码,该损失优先考虑逐像素精度,但忽略了篡改区域的空间位置和形状细节。 *解决方案*:一种基于掩码引导查询的转换器框架(MGQFormer),该框架使用基本事实掩码来引导可学习查询令牌(LQT)识别伪造区域。具体情况
利用BayarConv和Transformer编码器从输入图像中提取RGB和噪声特征,过空间和通道注意模块(SCAM,spatial and channel attention module)对多模态特征进行融合。其特征提取器如下:  我们设计了两个可学习的查询token来表示真实和伪造的特征,它们用于在我们提出的基于查询的Transformer解码器中搜索篡改区域。为了使查询token有效参考和基于查询的解码器快速收敛,我们提出了一种利用GroundTruth掩模的空间位置和形状细节的掩模引导训练策略。其解码器如下:  具体来说,我们将噪声的GT掩模输入MGQFrorer,以获得引导查询token(GQT)和辅助掩模 $ M_{aux} $ 。然后,利用辅助损失 $ L_{aux} $ ,使GQT包含伪造区域的空间和形状信息。此外,我们提出了一种掩模引导的损失 $ L_{guide} $ 来减小LQT和GQT之间的距离。
A New Benchmark and Model for Challenging Image Manipulation Detection
发表于AAAI2024,包含RGB和频率特征的hrnet双分支架构,能够检测双压缩伪影的压缩伪影学习模型。
*现有问题*: - 所有现有的IMD技术在从大图像中检测小的篡改区域时都遇到了挑战。 - 基于压缩的IMD方法在相同质量因子的双重压缩的情况下面临困难。 *解决方案*:包含RGB和频率特征的双分支架构,能够检测双压缩伪影的压缩伪影学习模型。